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I. INTRODUCTION 

Graphs are a pervasive data structure in computer science, 

and algorithms for working with them are fundamental to 

the field. There are hundreds of interesting computational 

problems defined in terms of graphs. 
 

There are two standard ways to represent a graph G = (V, 

E) as a collection of adjacency list or as an adjacency 

matrix. Either way is applicable to both directed and 

undirected graphs. 

A. Adjacency Matrix 

For the adjacency matrix representation of a graph G = (V, 

E), we assume that the vertices are numbered 1, 2, . . . ,|V| 

in some arbitrary manner. Then the adjacency matrix 

representation of a graph G consists of |V| × |V| matrix A= 

(      ) such that 

       {
            

            
 

 

The adjacency matrix of a graph requires O(V
2
) memory, 

independent of the number of edges in the graph. 

 
 1 2 3 4 5 

1 0 1 0 1 0 

2 0 0 0 1 1 

3 0 1 0 0 1 

4 0 0 0 0 1 

5 0 0 0 0 0 

(b) 
 

Fig. 1.  Representation of an directed graph. (a) An 

directed graph G having five vertices and seven edges. (b) 

The adjacency-matrix representation of G. 

 

 
Path 

A path is a walk in which all the edges and all the vertices 

are different. 

B. Shortest Path 

In a shortest path problem we are given a weighted 

directed graph G = (V, E), with weight function W: ER 

mapping edges to real valued weights. The weight of path 

p = {V0, V1, . . . ,Vk} is the sum of the weights of its 

constituent edges. 

     ∑          

 

   

 

We define the shortest path weight from u to v by 

      

 {
   {         }                                 

           
 

 

A shortest path from vertex u to vertex v is then defined as 

any path p with weight w(p)= δ(u,v). 

C. Variants of shortest Path Problem 

Single Destination Shortest Path Problem: Finding a 

shortest path to a given destination vertex t from each 

vertex v. 
 

Single Pair Shortest Path Problem: Finding a shortest path 

u to v for given vertices u and v. If we solve the single 

source problem with source vertex u, we solve this 

problem also. 
 

All Pairs Shortest Path Problem: Finding a shortest path 

from u to v for every pair of vertices u and v. Although 

this problem can be solved by running a single source 

algorithm once for each vertex. 

D. Multiple Queues using Single Array 

We can implement multiple queues using single 

dimensional arrays. In a one dimensional array, multiple 

queues can be placed. Insertion from its rear end and 

deletion from its front end can be possible for desired 

queue. We can visualize this idea with the help of figure 2. 
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Fig. 2.  Multiple queues using single array. 

 

As shown in the Fig. 2, there are three queues having their 

own front and rear positioned at appropriate points in a 

single dimensional array. 
 

In this paper we designed a polynomial time algorithm 

which takes an input a directed acyclic graph G = (V, E) 

and two vertices s and t and returns the number of paths 

from s to t in G. 

II. ALGORITHM 

Given a graph G = (V, E) and a distinguished source 

vertex “s” and distinguished destination vertex “d”, this 

algorithm search systematically explores the edges of G to 

“discover” is there a path from “s” to “d” and count the 

number of paths from “s” to “d”.  
 

This algorithm works for the directed acyclic graphs. We 

have taken Graph G = (V, E) in the form of the adjacency 

matrix A= (      ). Let Q be the multiple queues in a single 

array. F and R be two array to store front position and rear 

position of each queues in Q. 

 

path( Matrix A) 

1.  front  0, rear  0 

2.  for i 1 to u do   

3.  F[i]  front  

4.  front  rear    

5.  for j  1 to v do   

6.  if A[i][j] = 1 

7.    then Q[front]  j 

8.           front  front + 1 

9.           rear  rear + 1 

10.  repeat 

11.  R[i]  rear 

12. repeat 

13. s  Source vertex in the graph G = (V, E). 

14. d  Destination vertex in the graph G = (V, E). 

15. find_path(s, F[s], R[s], d) 

 
 

find_path(s, f, r, d) 

1.  f F[s] 

2.  r  R[s] 

3. if(s=d)  

4.  then count  count + 1 

5. while (f<r) 

6.  find_path(Q[f], f, r, d) 

7.  f  f + 1 

8. repeat 

III. WORKING OF ALGORITHM 
 

Let us consider the following directed acyclic graph G= 

(V, E) = (8, 12). 

 

 

 

 

 

 

 

 

 

 

(a) 
 

 

 

 

 

 

 

 

 

 

 

 

(b) 
 

Fig. 3.  Representation of an directed graph. (a) An 

directed graph G having eight vertices and fourteen edges. 

(b) The adjacency-matrix representation of G. 
 

This adjacency matrix is stored in the matrix A=(      ). 

We have taken Graph G = (V, E) in the form of the 

adjacency matrix A= (      ). Let Q be the multiple queues 

in a single array. F[] and R[] be two array to store front 

position and rear position of each queues in Q. The path() 

method is going to add the each vertex out degree into the 

queue Q[], at the same time it is going to add front and 

rear of each queues in Q[] to the F[] and R[] respectively. 

This assignment is shown in the below figure 4. 
 

 
0 1 2 3 4 5 6 7 8 9 10 11 12 

Q 4 5 8 3 4 8 5 6 7 8 5 7  

(a) 

 
0 1 2 3 4 5 6 7 8 

F 0 0 3 6 8 9 10 11 11 

(b) 

 
0 1 2 3 4 5 6 7 8 

R 0 3 6 8 9 10 11 11 12 

(c) 
 

Fig. 4. (a) Multiple queues using single array Q. (b) F[] 

array to hold fronts of each queues in Q. (c) R[] array to 

hold rears of each queues in Q. 
 

Let us consider the given source vertex „s‟ be „2‟ in the 

graph G, and destination vertex „d‟ be „7‟, „count= 0‟. 

Now we call the method find_path() with „2‟ as source 

vertex „s‟, F[2]  6 as „f‟ , R[2]  8 as „r‟ and „7‟ as 

destination vertex „d‟. The below steps show how the 

algorithm works. 

 1 2 3 4 5 6 7 8 

1 0 0 0 1 1 0 0 1 

2 0 0 1 1 0 0 0 1 

3 0 0 0 0 1 1 0 0 

4 0 0 0 0 0 0 1 0 

5 0 0 0 0 0 0 0 1 

6 0 0 0 0 1 0 0 0 

7 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 1 0 

0 1 2 3 4 5 6 7 8 9 

1 2 3 4 5 6 7 8 

10 

Queue 1 of size 

5 
Queue 2 of size 

4 

Queue 3 

of size 2 

front 1 front 2 front 3 rear 1 rear 2 
rear 3 

4 
5 6 

7 8 

1 2 3 
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Step 1: find_path(2,6,8,7)  

 f  F[2]  3 ,  r  R[2]  6.     

 if(2==7) False. No increment in count. 

while(3<6) True, Enter the loop 

     Call the method find_path(Q[3],3,6,7). 

 

 

 

 

Step 2: find_path(3,3,6,7)  

 f  F[3]  6 ,  r  R[3]  8.     

 if(3==7) False. No increment in count. 

while(6<8) True, Enter the loop 

     Call the method find_path(Q[6],6,8,7). 
 

 

 

 

 

Step 3: find_path(5,6,8,7)  

 f  F[5]  9 ,  r  R[5]  10.     

 if(5==7) False. No increment in count. 

while(9<10) True, Enter the loop 

     Call the method find_path(Q[9],9,10,7). 
 

 

 

 

Step 4: find_path(8,9,10,7)  

 f  F[8]  11 ,  r  R[8]  12.     

 if(8==7) False. No increment in count. 

while(11<12) True, Enter the loop 

     Call the method find_path(Q[11],11,12,7). 
 

 

 

 

Step 5: find_path(7,11,12,7)  

 f  F[7]  11 ,  r  R[7]  11.     

 if(7==7) True. Increment count by one. 

while(11<11) False, Exit the loop 

 
 

 

 

 

 

Step 4(a): f  11+1  12,  r   12.     

 while(12<12) False, Exit the loop 

 

 
 

 

 

 

 

Step 3(a): f  9+1  10,  r   10.     

 while(10<10) False, Exit the loop 
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Step 2(a): f  6+1  7,  r   8.     

 while(7<8) True, Enter the loop 

      Call the method find_path(Q[7],7,8,7). 

 
 

 

 

Step 2(b): find_path(6,7,8,7)  

 f  F[6]  10 ,  r  R[6]  11.     

 if(6==7) False. No increment in count. 

while(10<11) True, Enter the loop 

     Call the method find_path(Q[10],10,11,7). 

 

 
 

 

Step 2(c): find_path(5,10,11,7)  

 f  F[5]  9 ,  r  R[5]  10.     

 if(5==7) False. No increment in count. 

while(9<10) True, Enter the loop 

     Call the method find_path(Q[9],9,10,7). 

 

 

 

 

Step 2(d): find_path(8,9,10,7)  

 f  F[8]  11 ,  r  R[8]  12.     

 if(8==7) False. No increment in count. 

while(11<12) True, Enter the loop 

     Call the method find_path(Q[11],11,12,7). 

 

 
 

 

 

Step 2(e): find_path(7,11,12,7)  

 f  F[7]  11 ,  r  R[7]  11.     

 if(7==7) True. Increment count by one. 

while(11<11) False, Exit the loop 

 
 

 

 

 

Step 2(d)(i): f  11+1  12,  r   12.     

 while(12<12) False, Exit the loop 

 

 

 

 
 

 

 

 

 

Step 2(c)(i): f  9+1  10,  r   10.     

 while(10<10) False, Exit the loop 
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Step 2(b)(i): f  10+1  11,  r   11.     

 while(11<11) False, Exit the loop 

 

 

 
 

 

 

Step 2(a)(i): f  7+1  8,  r   8.     

 while(8<8) False, Exit the loop 

 

 

 

 
 

 

 

Step 1(a): f  3+1  4,  r 6 .     

while(4<6) True, Enter the loop 

               Call the method find_path(Q[4],4,6,7) 

 

 
 

 

 

Step 1(b): find_path(4,4,6,7)  

 f  F[4]  8 ,  r  R[4]  9.     

 if(4==7) False. No increment in count. 

while(8<9) True, Enter the loop 

                   Call the method find_path(Q[8],8,9,7). 

 
 

 

 

Step 1(c): find_path(7,8,9,7)  

 f  F[7]  11 ,  r  R[7]  11.     

 if(7==7) True. Increment count by one. 

while(11<11) False, Exit the loop 

 

 
 

 

 

 

Step 1(b)(i): f  8+1  9,  r   9.     

 while(9<9) False, Exit the loop 

 

 

 

 
 

 

 

Step 1(a)(i): f  4+1  5,  r 6 .     

while(5<6) True, Enter the loop 

               Call the method find_path(Q[5],5,6,7) 
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Step 1(a)(ii): find_path(8,5,6,7)  

 f  F[8]  11 ,  r  R[8]  12.     

 if(8==7) False. No increment in count. 

while(11<12) True, Enter the loop 

                   Call the method find_path(Q[11],11,12,7). 

 
 

 

Step 1(a)(iii): find_path(7,11,12,7)  

 f  F[7]  11 ,  r  R[7]  11.     

 if(7==7) True. Increment count by one. 

while(11<11) False, Exit the loop 

 

 
 

 

 

Step 1(a)(ii)(x): f  11+1  12,  r   12.     

 while(12<12) False, Exit the loop 

 

 

 

 
 

 

 

 

Step 1(a)(i)(x): f  5+1  6,  r   6.     

 while(6<6) False, Exit the loop 

 

 

 

 
 

After exiting all loops the number paths from „2‟ to „7‟ is stored in count which will be „4‟. 

 

IV. TIME COMPLEXITY 
 

For an n-state diagraph with outdegree d, the time 

complexity of the algorithm is O (n
3
d). 
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