
ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 10, October 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41021 101

A polynomial time algorithm to find number of

paths in directed acyclic graph between given

two vertices s and t.

Dr. Ishwar Baidari
1
, Nagaraj Honnikoll

2

Associate Professor, Computer Science Department, Karnataka University, Dharwad, India
 1

Computer Science Department, Karnataka University, Dharwad, India
 2

Abstract: The algorithm takes an input a directed acyclic graph G = (V, E) and two vertices s and t and returns the

number of paths from s to t in G.

Keywords: directed acyclic graph, paths, queues.

I. INTRODUCTION

Graphs are a pervasive data structure in computer science,

and algorithms for working with them are fundamental to

the field. There are hundreds of interesting computational

problems defined in terms of graphs.

There are two standard ways to represent a graph G = (V,

E) as a collection of adjacency list or as an adjacency

matrix. Either way is applicable to both directed and

undirected graphs.

A. Adjacency Matrix

For the adjacency matrix representation of a graph G = (V,

E), we assume that the vertices are numbered 1, 2, . . . ,|V|

in some arbitrary manner. Then the adjacency matrix

representation of a graph G consists of |V| × |V| matrix A=

() such that

 {

The adjacency matrix of a graph requires O(V
2
) memory,

independent of the number of edges in the graph.

 1 2 3 4 5

1 0 1 0 1 0

2 0 0 0 1 1

3 0 1 0 0 1

4 0 0 0 0 1

5 0 0 0 0 0

(b)

Fig. 1. Representation of an directed graph. (a) An

directed graph G having five vertices and seven edges. (b)

The adjacency-matrix representation of G.

Path

A path is a walk in which all the edges and all the vertices

are different.

B. Shortest Path

In a shortest path problem we are given a weighted

directed graph G = (V, E), with weight function W: ER

mapping edges to real valued weights. The weight of path

p = {V0, V1, . . . ,Vk} is the sum of the weights of its

constituent edges.

 ∑

We define the shortest path weight from u to v by

 {
 { }

A shortest path from vertex u to vertex v is then defined as

any path p with weight w(p)= δ(u,v).

C. Variants of shortest Path Problem

Single Destination Shortest Path Problem: Finding a

shortest path to a given destination vertex t from each

vertex v.

Single Pair Shortest Path Problem: Finding a shortest path

u to v for given vertices u and v. If we solve the single

source problem with source vertex u, we solve this

problem also.

All Pairs Shortest Path Problem: Finding a shortest path

from u to v for every pair of vertices u and v. Although

this problem can be solved by running a single source

algorithm once for each vertex.

D. Multiple Queues using Single Array

We can implement multiple queues using single

dimensional arrays. In a one dimensional array, multiple

queues can be placed. Insertion from its rear end and

deletion from its front end can be possible for desired

queue. We can visualize this idea with the help of figure 2.

1 2

4 5

3

(a)

5

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 10, October 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41021 102

Fig. 2. Multiple queues using single array.

As shown in the Fig. 2, there are three queues having their

own front and rear positioned at appropriate points in a

single dimensional array.

In this paper we designed a polynomial time algorithm

which takes an input a directed acyclic graph G = (V, E)

and two vertices s and t and returns the number of paths

from s to t in G.

II. ALGORITHM

Given a graph G = (V, E) and a distinguished source

vertex “s” and distinguished destination vertex “d”, this

algorithm search systematically explores the edges of G to

“discover” is there a path from “s” to “d” and count the

number of paths from “s” to “d”.

This algorithm works for the directed acyclic graphs. We

have taken Graph G = (V, E) in the form of the adjacency

matrix A= (). Let Q be the multiple queues in a single

array. F and R be two array to store front position and rear

position of each queues in Q.

path(Matrix A)

1. front  0, rear  0

2. for i 1 to u do

3. F[i]  front

4. front  rear

5. for j  1 to v do

6. if A[i][j] = 1

7. then Q[front]  j

8. front  front + 1

9. rear  rear + 1

10. repeat

11. R[i]  rear

12. repeat

13. s  Source vertex in the graph G = (V, E).

14. d  Destination vertex in the graph G = (V, E).

15. find_path(s, F[s], R[s], d)

find_path(s, f, r, d)

1. f F[s]

2. r  R[s]

3. if(s=d)

4. then count  count + 1

5. while (f<r)

6. find_path(Q[f], f, r, d)

7. f  f + 1

8. repeat

III. WORKING OF ALGORITHM

Let us consider the following directed acyclic graph G=

(V, E) = (8, 12).

(a)

(b)

Fig. 3. Representation of an directed graph. (a) An

directed graph G having eight vertices and fourteen edges.

(b) The adjacency-matrix representation of G.

This adjacency matrix is stored in the matrix A=().

We have taken Graph G = (V, E) in the form of the

adjacency matrix A= (). Let Q be the multiple queues

in a single array. F[] and R[] be two array to store front

position and rear position of each queues in Q. The path()

method is going to add the each vertex out degree into the

queue Q[], at the same time it is going to add front and

rear of each queues in Q[] to the F[] and R[] respectively.

This assignment is shown in the below figure 4.

0 1 2 3 4 5 6 7 8 9 10 11 12

Q 4 5 8 3 4 8 5 6 7 8 5 7

(a)

0 1 2 3 4 5 6 7 8

F 0 0 3 6 8 9 10 11 11

(b)

0 1 2 3 4 5 6 7 8

R 0 3 6 8 9 10 11 11 12

(c)

Fig. 4. (a) Multiple queues using single array Q. (b) F[]

array to hold fronts of each queues in Q. (c) R[] array to

hold rears of each queues in Q.

Let us consider the given source vertex „s‟ be „2‟ in the

graph G, and destination vertex „d‟ be „7‟, „count= 0‟.

Now we call the method find_path() with „2‟ as source

vertex „s‟, F[2]  6 as „f‟ , R[2]  8 as „r‟ and „7‟ as

destination vertex „d‟. The below steps show how the

algorithm works.

 1 2 3 4 5 6 7 8

1 0 0 0 1 1 0 0 1

2 0 0 1 1 0 0 0 1

3 0 0 0 0 1 1 0 0

4 0 0 0 0 0 0 1 0

5 0 0 0 0 0 0 0 1

6 0 0 0 0 1 0 0 0

7 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 1 0

0 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8

10

Queue 1 of size

5
Queue 2 of size

4

Queue 3

of size 2

front 1 front 2 front 3 rear 1 rear 2
rear 3

4
5 6

7 8

1 2 3

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 10, October 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41021 103

r

r

Step 1 f

f

3 f 6 r 2 s 0 count

Q

Q
4

0

5

1

8

2

3

3

4

4

8

5

5

6

6

7

7

8

8

9

5

10

7

11

12

r Step 2 f

6 f 8 r 3 s 0 count

Q 4

0

5

1

8

2

3

3

4

4

8

5

5

6

6

7

7

8

8

9

5

10

7

11

12

r Step 3 f

9 f 10 r 5 s 0 count

Q 4

0

5

1

8

2

3

3

4

4

8

5

5

6

6

7

7

8

8

9

5

10

7

11

12

r Step 4 f

11 f 12 r 8 s 0 count

Q 4

0

5

1

8

2

3

3

4

4

8

5

5

6

6

7

7

8

8

9

5

10

7

11

12

r Step 5 f

11 f 11 r 7 s 1 count

Q 4

0

5

1

8

2

3

3

4

4

8

5

5

6

6

7

7

8

8

9

5

10

7

11

12

r Step 4(a) f

12 f 12 r 8 s 1 count

Q 4

0

5

1

8

2

3

3

4

4

8

5

5

6

6

7

7

8

8

9

5

10

7

11

12

r Step 3(a) f

10 f 10 r 5 s 1 count

Q 4

0

5

1

8

2

3

3

4

4

8

5

5

6

6

7

7

8

8

9

5

10

7

11

12

Step 1: find_path(2,6,8,7)

 f  F[2]  3 , r  R[2]  6.

 if(2==7) False. No increment in count.

while(3<6) True, Enter the loop

 Call the method find_path(Q[3],3,6,7).

Step 2: find_path(3,3,6,7)

 f  F[3]  6 , r  R[3]  8.

 if(3==7) False. No increment in count.

while(6<8) True, Enter the loop

 Call the method find_path(Q[6],6,8,7).

Step 3: find_path(5,6,8,7)

 f  F[5]  9 , r  R[5]  10.

 if(5==7) False. No increment in count.

while(9<10) True, Enter the loop

 Call the method find_path(Q[9],9,10,7).

Step 4: find_path(8,9,10,7)

 f  F[8]  11 , r  R[8]  12.

 if(8==7) False. No increment in count.

while(11<12) True, Enter the loop

 Call the method find_path(Q[11],11,12,7).

Step 5: find_path(7,11,12,7)

 f  F[7]  11 , r  R[7]  11.

 if(7==7) True. Increment count by one.

while(11<11) False, Exit the loop

Step 4(a): f  11+1  12, r  12.

 while(12<12) False, Exit the loop

Step 3(a): f  9+1  10, r  10.

 while(10<10) False, Exit the loop

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 10, October 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41021 104

r Step 2(d) f

11 f 12 r 8 s 1 count

Q 4

0

5

1

8

2

3

3

4

4

8

5

5

6

6

7

7

8

8

9

5

10

7

11

12

r Step 2(a) f

7 f 8 r 3 s 1 count

Q 4

0

5

1

8

2

3

3

4

4

8

5

5

6

6

7

7

8

8

9

5

10

7

11

12

r Step 2(b) f

10 f 11 r 6 s 1 count

Q 4

0

5

1

8

2

3

3

4

4

8

5

5

6

6

7

7

8

8

9

5

10

7

11

12

r Step 2(c) f

9 f 10 r 5 s 1 count

Q 4

0

5

1

8

2

3

3

4

4

8

5

5

6

6

7

7

8

8

9

5

10

7

11

12

r Step 2(e) f

11 f 11 r 7 s 2 count

Q 4

0

5

1

8

2

3

3

4

4

8

5

5

6

6

7

7

8

8

9

5

10

7

11

12

r Step 2(d)(i) f

11 f 12 r 8 s 2 count

Q 4

0

5

1

8

2

3

3

4

4

8

5

5

6

6

7

7

8

8

9

5

10

7

11

12

r Step 2(c)(i) f

10 f 10 r 5 s 1 count

Q 4

0

5

1

8

2

3

3

4

4

8

5

5

6

6

7

7

8

8

9

5

10

7

11

12

Step 2(a): f  6+1  7, r  8.

 while(7<8) True, Enter the loop

 Call the method find_path(Q[7],7,8,7).

Step 2(b): find_path(6,7,8,7)

 f  F[6]  10 , r  R[6]  11.

 if(6==7) False. No increment in count.

while(10<11) True, Enter the loop

 Call the method find_path(Q[10],10,11,7).

Step 2(c): find_path(5,10,11,7)

 f  F[5]  9 , r  R[5]  10.

 if(5==7) False. No increment in count.

while(9<10) True, Enter the loop

 Call the method find_path(Q[9],9,10,7).

Step 2(d): find_path(8,9,10,7)

 f  F[8]  11 , r  R[8]  12.

 if(8==7) False. No increment in count.

while(11<12) True, Enter the loop

 Call the method find_path(Q[11],11,12,7).

Step 2(e): find_path(7,11,12,7)

 f  F[7]  11 , r  R[7]  11.

 if(7==7) True. Increment count by one.

while(11<11) False, Exit the loop

Step 2(d)(i): f  11+1  12, r  12.

 while(12<12) False, Exit the loop

Step 2(c)(i): f  9+1  10, r  10.

 while(10<10) False, Exit the loop

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 10, October 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41021 105

r Step 2(b)(i) f

11 f 11 r 6 s 2 count

Q 4

0

5

1

8

2

3

3

4

4

8

5

5

6

6

7

7

8

8

9

5

10

7

11

12

r Step 2(a) f

8 f 8 r 3 s 2 count

Q 4

0

5

1

8

2

3

3

4

4

8

5

5

6

6

7

7

8

8

9

5

10

7

11

12

r Step 1(a) f

4 f 6 r 2 s 2 count

Q 4

0

5

1

8

2

3

3

4

4

8

5

5

6

6

7

7

8

8

9

5

10

7

11

12

r Step 1(b) f

8 f 9 r 4 s 2 count

Q 4

0

5

1

8

2

3

3

4

4

8

5

5

6

6

7

7

8

8

9

5

10

7

11

12

r Step 1(c) f

11 f 12 r 7 s 3 count

Q 4

0

5

1

8

2

3

3

4

4

8

5

5

6

6

7

7

8

8

9

5

10

7

11

12

r Step 1(b)(i) f

9 f 9 r 4 s 3 count

Q 4

0

5

1

8

2

3

3

4

4

8

5

5

6

6

7

7

8

8

9

5

10

7

11

12

r Step 1(a)(i) f

5 f 6 r 2 s 3 count

Q 4

0

5

1

8

2

3

3

4

4

8

5

5

6

6

7

7

8

8

9

5

10

7

11

12

Step 2(b)(i): f  10+1  11, r  11.

 while(11<11) False, Exit the loop

Step 2(a)(i): f  7+1  8, r  8.

 while(8<8) False, Exit the loop

Step 1(a): f  3+1  4, r 6 .

while(4<6) True, Enter the loop

 Call the method find_path(Q[4],4,6,7)

Step 1(b): find_path(4,4,6,7)

 f  F[4]  8 , r  R[4]  9.

 if(4==7) False. No increment in count.

while(8<9) True, Enter the loop

 Call the method find_path(Q[8],8,9,7).

Step 1(c): find_path(7,8,9,7)

 f  F[7]  11 , r  R[7]  11.

 if(7==7) True. Increment count by one.

while(11<11) False, Exit the loop

Step 1(b)(i): f  8+1  9, r  9.

 while(9<9) False, Exit the loop

Step 1(a)(i): f  4+1  5, r 6 .

while(5<6) True, Enter the loop

 Call the method find_path(Q[5],5,6,7)

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 10, October 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41021 106

r Step 1(a)(ii) f

11 f 12 r 2 s 3 count

Q 4

0

5

1

8

2

3

3

4

4

8

5

5

6

6

7

7

8

8

9

5

10

7

11

12

r Step 1(a)(iii) f

11 f 12 r 7 s 4 count

Q 4

0

5

1

8

2

3

3

4

4

8

5

5

6

6

7

7

8

8

9

5

10

7

11

12

r Step 1(a)(ii)(x) f

12 f 12 r 7 s 4 count

Q 4

0

5

1

8

2

3

3

4

4

8

5

5

6

6

7

7

8

8

9

5

10

7

11

12

r Step 1(a)(i)(x) f

6 f 6 r 2 s 4 count

Q 4

0

5

1

8

2

3

3

4

4

8

5

5

6

6

7

7

8

8

9

5

10

7

11

12

Step 1(a)(ii): find_path(8,5,6,7)

 f  F[8]  11 , r  R[8]  12.

 if(8==7) False. No increment in count.

while(11<12) True, Enter the loop

 Call the method find_path(Q[11],11,12,7).

Step 1(a)(iii): find_path(7,11,12,7)

 f  F[7]  11 , r  R[7]  11.

 if(7==7) True. Increment count by one.

while(11<11) False, Exit the loop

Step 1(a)(ii)(x): f  11+1  12, r  12.

 while(12<12) False, Exit the loop

Step 1(a)(i)(x): f  5+1  6, r  6.

 while(6<6) False, Exit the loop

After exiting all loops the number paths from „2‟ to „7‟ is stored in count which will be „4‟.

IV. TIME COMPLEXITY

For an n-state diagraph with outdegree d, the time

complexity of the algorithm is O (n
3
d).

REFERENCES

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and

Clifford Stein, Introduction To Algorithms, 2nd ed., MIT Press,

Cambridge, MA, U.S.A.
[2] Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, Data

Structures and Algorithms, 4th Impression, Dorling Kindersley,

India.
[3] A. A. Puntambekar, Data Structures Using „c‟, 1st ed., Technical

Publications, Pune, India.

